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ABSTRACT
Many important applications, such as those using sparse
data structures, have memory reference patterns that are
unknown at compile-time. Prior work has developed run-
time reorderings of data and computation that enhance lo-
cality in such applications.

This paper presents a compile-time framework that al-
lows the explicit composition of run-time data and iteration-
reordering transformations. Our framework builds on the
iteration-reordering framework of Kelly and Pugh to rep-
resent the effects of a given composition. To motivate our
extension, we show that new compositions of run-time re-
ordering transformations can result in better performance
on three benchmarks.

We show how to express a number of run-time data and
iteration-reordering transformations that focus on improv-
ing data locality. We also describe the space of possible
run-time reordering transformations and how existing trans-
formations fit within it. Since sparse tiling techniques are
included in our framework, they become more generally ap-
plicable, both to a larger class of applications, and in their
composition with other reordering transformations. Finally,
within the presented framework data need be remapped only
once at runtime for a given composition thus exhibiting one
example of overhead reductions the framework can express.

Categories and Subject Descriptors
D.3.4 [Processors]: Optimization

General Terms
Performance, Experimentation

Keywords
optimization, run-time transformations, data remapping, it-
eration reordering, inspector/executor, sparse tiling
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1. INTRODUCTION
Data locality and parallelism are essential for improving

the performance of applications on current architectures.
Data and loop transformations can further both goals. Un-
til recently the focus has been primarily on compile-time
transformation frameworks [19, 27, 18, 3, 16, 17, 32, 14, 31]
restricted to affine loop bounds and affine array references.
These frameworks allow for the uniform representation, the
composition, the legality determination, and sometimes a
benefit model of various compile-time transformations.

One such framework — that of Kelly and Pugh [16] —
represents loop nests as iteration spaces. A compiler can
use this framework to transform iteration spaces. The le-
gality of a transformation is determined by the transformed
data dependences of the program. Previous compile-time
frameworks (including theirs) conservatively assume depen-
dence when faced with non-affine memory references, which
occur in many important applications such as sparse ma-
trix and unstructured mesh computations [21]. Fortunately,
the Kelly and Pugh framework describes non-affine mem-
ory references (such as indirect memory references A[B[i]])
by using Presburger arithmetic with uninterpreted function
symbols [23]. We exploit this ability to specify data map-
pings between loop iterations and data locations, and de-
pendences between loop iterations, when non-affine memory
references are involved. We can also express run-time data
and iteration-reordering transformations for locality, which
include consecutive packing [7], graph partitioning [12],
bucket-tiling [21], lexicographical grouping [7], full sparse
tiling [29], and cache blocking [9].

Describing the effect of run-time data and iteration re-
orderings in a compile-time framework has several advan-
tages. First, both run-time and compile-time transforma-
tions are uniformly described. Secondly, the transformation
legality checks provide constraints on the run-time reorder-
ing functions. Finally, the overhead involved in generating
the run-time reordering functions can be reduced with vari-
ous optimizations, such as moving the data to new locations
only once and traversing fewer dependences.

Run-time reordering transformations are implemented with
inspectors and executors, originally developed for paralleliza-
tion [6]. In this setting, the inspector traverses the index ar-
rays that describe the data mappings and/or dependences.
Based on the values in these arrays, it generates data and/or
iteration-reordering functions. The executor is a transformed
version of the original loop that uses the reordered data
and/or new schedule based on the reordering functions. Our



key insight is that given a composition of run-time reorder-
ings, the modified data mappings and/or dependences are
used by inspectors for subsequent run-time reordering trans-
formations. While this paper focuses on data locality, our
framework can also be used to describe run-time reordering
transformations for parallelism.

Formalizing run-time data and iteration reorderings is only
one step toward our goal of automating the creation of com-
posite run-time transformations for computations with non-
affine memory references. Still needed are methods of au-
tomatically generating run-time inspectors for a variety of
reordering heuristics. Another key component is guidance
mechanisms that decide when to apply which sequence of
transformations. These decisions should probably be made
at runtime based on the characteristics of the actual data
mappings and dependences. Nevertheless, we believe that
the framework presented here helps make such a system pos-
sible, and our experiments (on the irreg, nbf, and moldyn

benchmarks [12]) illustrate that, in some cases, large per-
formance improvements result from composite run-time re-
ordering transformations.

Summarizing, we make the following contributions:

• We give experimental results (using hand-coded ver-
sions which we believe can ultimately be automatically
generated) that show that significant performance im-
provements can result from composing run-time re-
ordering transformations.

• We show how to use an existing compile-time frame-
work to describe a number of existing run-time data
and iteration-reordering transformations that improve
data locality. We also describe the space of possible
run-time reordering transformations and how existing
transformations fit within it.

• We show how sparse tiling techniques, which improve
locality in loops with data dependences, can be de-
scribed in this framework. As a result, sparse tiling
can be applied to a larger class of programs (until now,
it has only been applied to Gauss-Seidel).

• We give experimental results that show moving the
data to new locations only once reduces the overhead
of composed run-time reordering transformations.

Section 2 motivates the composition of run-time reorder-
ing transformations by describing experimental results where
full sparse tiling composed with other transformations can
result in significant performance improvements. Section 3
reviews the terminology for the Kelly and Pugh framework
using an example irregular kernel (used throughout the pa-
per). In Section 4, we describe how to formally express run-
time reordering transformations and the space of possibili-
ties for such transformations. Section 5 formally describes
an example composed inspector. Section 6 shows examples
of using the framework to reduce the overhead of run-time
reordering transformations. Finally, sections 7, 8 and 9 are
future work, related work, and conclusions.

2. MOTIVATION FOR COMPOSITIONS
Our experiments compare the performance resulting from

various run-time transformation compositions on the moldyn,
nbf, and irreg benchmarks. The goal is to motivate a

do s = 1 to num steps

do i=1 to num nodes

S1 x[i] = x[i] + vx[i] + fx[i]

enddo

do j=1 to num inter

S2 fx[left[j]] += g(x[left[j]], x[right[j]])

S3 fx[right[j]] += g(x[left[j]], x[right[j]])

enddo

do k=1 to num nodes

S4 vx[k] += fx[k]

enddo

enddo

Figure 1: Simplified moldyn example

framework that allows compile-time composition of run-time
reordering transformations by showing that benchmarks with
hand-coded composed transformations result in improved
performance. The moldyn benchmark is taken from the
molecular dynamics application CHARMM, the nbf bench-
mark is taken from the GROMOS molecular dynamics code,
and the irreg benchmark exhibits the types of computa-
tions found in partial differential equation solvers [12].

Figure 1 shows a simplified version of the moldyn bench-
mark. There is an outer time-stepping loop that makes
amortization of run-time reordering overhead possible. State-
ment S1 calculates the new position of a molecule in the
x coordinate using the old position, velocity, and accelera-
tion. The j loop calculates the forces on the molecules using
the left and right index arrays, which indicate interaction
pairs. Previous work [7, 12] refers to left and right as the
access or index arrays, and x, vx, and fx as base or data
arrays.

Using the simplified moldyn benchmark in Figure 1, this
section describes some existing run-time reordering transfor-
mations for improving the data locality within the j loop.
We also describe the application of sparse tiling techniques,
which improve locality between the i, j, and k loops. Fi-
nally, we present experimental results for all three bench-
marks (moldyn, nbf, and irreg) on two different machines
when various compositions of run-time reordering transfor-
mations are applied.

2.1 Run-time Data Reordering
Given a loop with non-affine memory references like the j

loop in Figure 1, run-time data reordering transformations
attempt to improve the spatial locality in the loop by re-
ordering the data based on the order in which it is referenced
in the loop. Consecutive packing (CPACK [7]) and graph
partitioning (Gpart [12]) are two example data reordering
transformations discussed in this paper.

Figure 2 shows one possible mapping of iterations in the
j loop to locations in the data arrays x and fx based on
values in the index arrays left and right. A CPACK data
reordering would result in the new data mapping shown in
Figure 3. Notice that the data has been reordered based on
the memory reference order of the original mapping, there-
fore the computation exhibits better spatial locality.

We use the CPACK [7] and Gpart [12] data reordering
transformations to reorder the x, fx, and vx arrays based



1 2 3 4 5 6

x x1 x4x2 x5 x6x3

fx1 fx4fx2 fx5 fx6fx3fx

1 2 3 4 5 6 7 8j

Figure 2: Example mapping of iterations in the j

loop to locations in the data arrays x and fx. Here,
circles represent iterations of the j loop inside one
iteration of the outer time-stepping loop.

1 2 3 4 5 6

x x1x4 x2x5 x6x3

fx1fx4 fx2fx5 fx6fx3fx

1 2 3 4 5 6 7 8j

Figure 3: Example of Figure 2 mapping after the
CPACK data reordering.

on the iteration to data mapping in the j loop.
Partitioning algorithms like Gpart [12] logically operate

on a graph where each data location is a node. There is an
edge between two nodes whenever their associated data is
accessed within a loop iteration. By partitioning the nodes
(ie. data) of the graph so that the data associated with each
partition fits into (some level of) cache and ordering the data
consecutively within a partition, Gpart improves the spatial
locality of the computation.

2.2 Run-time Iteration Reordering
Often it is beneficial for an iteration reordering of a loop

with non-affine memory accesses to follow a data reorder-
ing [7, 12]. The goal of iteration reordering is to reorder the
iterations based on the order in which the loop touches the
data.

One such iteration-reordering transformation is lexicograph-
ical grouping (lexGroup) [7]. For the simple moldyn exam-
ple, Figure 3 shows how lexGroup further changes the data
mapping between the iterations in the j loop to locations in
the data arrays x and fx. Notice that iterations which touch
the same or adjacent data locations now execute consecu-
tively, therefore the computation exhibits better temporal
and spatial locality.

We experimented with the iteration-reordering transfor-
mations bucket tiling [21] and lexicographical sorting [12] as
well. However, lexicographical grouping (lexGroup) consis-
tently exhibited the best performance to overhead trade-off
on our benchmarks; therefore, the results in this paper al-
ways use lexGroup for reordering the iteration of the j loop.

1 2 3 4 5 6

x x1x4 x2x5 x6x3

fx1fx4 fx2fx5 fx6fx3fx

1 2 34 56 7 8j

Figure 4: Example of Figure 2 mapping after the
CPACK data reordering followed by a lexGroup it-
eration reordering.

2.3 Sparse Tiling
Sparse tiling programming techniques, full sparse tiling [29]

and cache blocking [9], were developed for an important ker-
nel used in Finite Element Methods, Gauss-Seidel. Sparse
tiling results in run-time generated tiles or iteration slices [24]
that cut between loops or across an outer loop and that only
access a subset of the total data. By performing an iteration
reordering based on sparse tiling, locality between loops or
iterations of an outer loop improves.

Sparse tiling differs from other iteration-reordering trans-
formations in four ways.

• Sparse tiling improves the locality between loops and
across iterations of outer loops even when there are
data dependences. Other run-time iteration-reordering
transformations for data locality are not applicable
when there are data dependences.

• Whereas existing run-time iteration reorderings for lo-
cality are realized with inspectors which traverse the
data mappings, sparse tiling inspectors traverse the
dependences.

• Until now, sparse tiling transformations have only been
applied to Gauss-Seidel. By specifying the effect of
sparse tiling within our composition framework, the
legality of applying sparse tiling in any program can
be determined.

• Sparse tiling can also be used to provide a coarser gran-
ularity of parallelism than other run-time reordering
transformations for parallelism [30].

Sparse tiling starts with a seed partitioning of iterations
in one of the loops (or in one iteration of an outer loop).
If other data and iteration-reordering transformations have
been applied to the loop being partitioned, then consecutive
iterations in the loop have good locality and a simple block
partitioning of the iterations is sufficient to obtain an effec-
tive seed partitioning. From this seed partitioning tiles are
grown to the other loops involved in the sparse tiling by a
traversal of the data dependences between loops (or between
iterations of an outer loop). The main difference between
full sparse tiling and cache blocking is how tile growth oc-
curs. In cache blocking [9], the seed partitioning occurs on
the first iteration of an outer loop and then tiles are grown
by shrinking each partition for later iterations of that outer
loop. The remaining iteration points are assigned to one
tile. Full sparse tiling allows the seed partitioning to occur
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Figure 5: We highlight the iterations of one sparse
tile for the code in Figure 1. The j loop has been
blocked to provide a seed partitioning. In the full
sparse tiled executor code, the iterations within a
tile are executed atomically.

at any loop or iteration within an outer loop, and tiles are
grown side-by-side.

For the simplified moldyn example, Figure 5 shows the
status of the data dependences between iterations of the
i, j, and k loops after applying the data reordering trans-
formation CPACK and iteration-reordering transformation
lexGroup. A full sparse tiling iteration reordering causes
subsets of all three loops to be executed atomically as sparse
tiles. Figure 5 highlights one such sparse tile where the j

loop has been blocked to create a seed partitioning. Fig-
ure 14 shows the executor that iterates over tiles and then
within the i, j, and k loops. Since iterations within all three
loops touch the same or adjacent data locations, locality be-
tween the loops is improved in the new schedule.

In our experiments, we also apply a data reordering trans-
formation, tile packing (tilePack), after applying full sparse
tiling. TilePack reorders the data arrays based on how data
is accessed within tiles. For example, in Figure 5 tilePack
creates the data ordering 4, 2, 5, 6, 3, 1, resulting in the con-
secutive ordering of data accessed within the highlighted
tile.

2.4 Experimental Results
The sizes of the data sets we use in terms of nodes and

edges in a representative graph are as follows.

Data set nodes edges

mol1 131072 1179648
mol2 442368 3981312
foil 144649 1074393
auto 448695 3314611

The baseline benchmarks and the executors for the run-
time reordering transformation compositions use inter-array
data regrouping [8] to leverage shared memory reference
patterns between data arrays. All compositions we con-
sider consist of a data reordering transformation (CPACK or
Gpart) followed by the iteration-reordering transformation
lexicographical grouping (lexGroup) for the j loop. We also
perform the composition CPACK, lexGroup, CPACK, lex-
Group. Finally, we apply full sparse tiling (FST) after the
other compositions to see if improving the locality between
the i, j, and k loops results in better performance.

10MB 31MB 11MB 37MB 18MB 61MB
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e 

w
/o

ut
 O

ve
rh

ea
d

CPACK, lexGroup
CPACK, lexGroup, FST
CPACK, lexGroup, CPACK, lexGroup
CPACK, lexGroup, CPACK, lexGroup, FST
Gpart, lexGroup
Gpart, lexGroup, FST

IBM Power3, 375MHz, 64KB L1 cache

irreg nbf moldyn

Figure 6: Normalized execution time without over-
head on the Power3.
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Figure 7: Normalized execution time without over-
head on the Pentium 4.

The composed run-time reordering transformations are
executed on two architectures: a 375MHz Power3 (64KB
L1 cache)1 and a 1.7GHz Pentium 4 (8KB L1 cache). On
the Power3 we use the compilation command
’xlc -bmaxdata:0x80000000 -bmaxstack:0x10000000 -O3
-DNDEBUG’, and on the Pentium 4 we use ’gcc -O2
-DNDEBUG’2. In our experiments, we target the L1 cache
when selecting parameters for Gpart and full sparse tiling
such as partition size.

Figures 6 and 7 show the normalized execution times for
the various compositions without overhead. The number of
outermost loop iterations (time steps) required to amortize
the run-time overhead are shown in Figures 8 and 9. We
calculate this number by taking the execution time of the
inspector and dividing by the savings per time step observed
in the executor.

When we apply our full sparse tiling technique in compo-
sition with existing run-time data and iteration-reordering

1A single node of the IBM Blue Horizon at the San Diego
Supercomputer Center.
2gcc version 2.96 on Red Hat Linux 7.2 2.96-108.7.2
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Figure 8: Amortization of the overhead on the
Power3 in number of outer loop iterations based on
the savings per iteration of the outer loop.
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Figure 9: Amortization of the overhead on the Pen-
tium 4 in number of outer loop iterations based on
the savings per iteration of the outer loop.

transformations, we observe mixed results on the Power3.
On the Pentium 4, using full sparse tiling in composition
with the other data and iteration-reordering transformations
results in improved performance for all our benchmarks and
data sets. The results for the moldyn benchmark are espe-
cially impressive.

The moldyn benchmark does more computation and ac-
cesses more data than the other two benchmarks. In fact,
for each molecule 72 bytes of data are stored. On the Pen-
tium 4, the cache line is only 64 bytes long. Therefore,
the data reordering transformations which improve spatial
locality have less effect than iteration-reordering transfor-
mations like full sparse tiling. Full sparse tiling improves
the performance in this benchmark to such an extent that
it is actually easier to amortize the inspectors that include
full sparse tiling (see Figure 9).

3. FRAMEWORK TERMINOLOGY
In this section, we review the Kelly-Pugh iteration-reordering

framework terminology using the simplified moldyn code in
Figure 1 as an example. Pugh and Wonnacott introduced
the idea of using uninterpreted function symbols to stati-
cally describe the values in index arrays and other non-affine
memory references [23]. Here we use this idea to describe
some of the data mappings and dependences in the simplified
moldyn example (Figure 1), which involve indirect memory
references.

3.1 Loops, Statements, and Data
The traditional literature on loop transformations repre-

sents each iteration within a loop nest as an integer tuple,
~p = [p1, ..., pn], where pq is the value of the iteration variable
for the qth loop. Thus, a loop’s iteration space is a set of
integer tuples with constraints indicating the loop bounds.

{[p1, ..., pn]|lb1 ≤ p1 ≤ ub1 ∧ · · · ∧ lbn ≤ pn ≤ ubn}

This representation is not very convenient for represent-
ing transformations that operate on a collection of loops
that are not perfectly nested. For instance, there are three
traditional iteration spaces in the code shown in figure 1,
and it is awkward to express how the sparse tiling run-time
reordering transformation operates across all three. Ahmed
et al. [1] and Kelly-Pugh [16] give two different methods for
building a unified iteration space. In this paper, we use the
Kelly-Pugh method. For the simplified moldyn example in
Figure 1, they would use a four-dimensional space. Each
loop corresponds to a pair of dimensions, where the first di-
mension of the pair is the numerical order of the loop as a
statement, and the second dimension is a value of the index
variable. A program executes its iterations in lexicographic
order of the unified iteration space.

For instance, using this representation, the [s, k]-th itera-
tion of S4 is denoted [s, 3, k, 1] since S4 is in the third state-
ment (loop j) of the outer loop, and its the first statement
within the k loop. The unified iteration space I0 for the
(untransformed) program is the following set:

I0 = {[s, 1, i, 1] | (1 ≤ s ≤ num steps)

∧ (1 ≤ i ≤ num nodes)} ∪

{[s, 2, j, q] | (1 ≤ s ≤ num steps)

∧ (1 ≤ j ≤ num inter)

∧ (1 ≤ q ≤ 2)} ∪

{[s, 3, k, 1] | (1 ≤ s ≤ num steps)

∧ (1 ≤ k ≤ num nodes)}

Next we will define data mappings and dependences for
this unified iteration space.

3.2 Data Mappings
Each array has an associated data space represented with

a integer tuple set with the same dimensionality as the array.
The simplified moldyn example contains 4 data spaces:

x0 = {[m] | 1 ≤ m ≤ num nodes}

vx0 = {[m] | 1 ≤ m ≤ num nodes}

fx0 = {[m] | 1 ≤ m ≤ num nodes}

left0 = {[m] | 1 ≤ m ≤ num inter}

right0 = {[m] | 1 ≤ m ≤ num inter}



The subscripts “0” are used here since these are the data
spaces for the original, untransformed program.

Define a data mapping MI→a from iterations to sets of
storage locations in an array a, so that for each iteration
~p ∈ I, MI→a(~p ) is the set of locations that are referenced
by iteration tuple ~p. Notice that the subscript “I → a” gives
the domain and range of the mapping.

The moldyn example has the following data mappings:

MI0→x0
= {[s, 1, i, 1] → [i]}

∪ {[s, 2, j, q] → [left(j)]}

∪ {[s, 2, j, q] → [right(j)]}

∪ {[s, 3, k, 1] → [k]}

MI0→fx0
= {[s, 1, i, 1] → [i]}

∪ {[s, 2, j, 1] → [left(j)]}

∪ {[s, 2, j, 2] → [right(j)]}

∪ {[s, 3, k, 1] → [k]}

MI0→vx0
= {[s, 1, i, 1] → [i]}

∪ {[s, 3, k, 1] → [k]}

MI0→left0 = {[s, 2, j, q] → [j]}

MI0→right0 = MI0→left0

Here we use uninterpreted function symbols to abstractly
represent the data mappings for which Figure 2 shows con-
crete examples.

3.3 Dependences
Define the dependences DI→I to be the set of directed

edges between iterations ~p ∈ I that represent dependent
computations. This set consists of the data dependence re-
lations between statement SV and SW denoted as dV W , with
1 ≤ V, W ≤ 4 in the simplified moldyn example. For exam-
ple, the dependences between statements S1 ([s, 1, i, 1]), S2
([s, 2, j, 1]), and S3 ([s, 2, j, 2]) due to the x and fx arrays
are specified with the following dependence relation.

d12 ∪ d13 = {[s, 1, i, 1] → [s′, 2, j, q] | (s ≤ s
′)

∧ (1 ≤ q ≤ 2)

∧ (i = left(j) ∨ i = right(j))}

The dependences between statements S2 ([s, 2, j, 1]),
S3 ([s, 2, j, 2]), and S4 ([s, 3, k, 1]) due to the fx arrays are
specified with the following dependence relations.

d24 ∪ d34 = {[s, 2, j, q] → [s′, 3, k, 1] | (s ≤ s
′)

∧ (1 ≤ q ≤ 2)

∧ (k = left(j) ∨ k = right(j))}

The arrows in Figure 5 represent concrete examples of
these dependences. Notice that the dependences d12 ∪ d13

are symmetric to the dependences d24∪d34 since both sets of
dependences have constraints involving the left and right

index arrays.

4. RUN-TIME REORDERING TRANSFOR-
MATIONS

With run-time reordering transformations, an inspector
traverses
mappings or data dependences transformed by reorderings
produced by earlier inspectors. Thus, we want our frame-
work to describe the data mappings and dependences in ef-
fect at all stages of the transformation process. At compile-
time the data and iteration reorderings are expressed with
uninterpreted function symbols. At run-time the inspectors
traverse and generate index arrays to store the reordering
functions.

Formally, a data reordering transformation is expressed
with a mapping Ra→a′ , where the data that was originally
stored in location m is relocated to Ra→a′(m). We do not
need to consider the legality of a data mapping since data
mappings do not affect data dependences - any one-to-one
data remapping is legal. The result of remapping an array
a is a new data mapping.

MI→a′ = {~p → Ra→a′(m)|m ∈ MI→a(~p ) ∧ ~p ∈ I}

An iteration-reordering transformation is expressed with
a mapping TI→I′ that assigns each iteration ~p in iteration
space I to iteration TI→I′ (~p ) in a new iteration space I ′.
The new execution order is given by the lexicographic order
of the iterations in I ′.

For iteration-reordering transformations, the new execu-
tion order must respect all the dependences of the original.
Thus for each {~p → ~q } ∈ DI→I , TI→I′ (~p ) must be lexico-
graphically earlier than TI→I′ (~q ).

∀~p, ~q : ~p → ~q ∈ DI→I ⇒ TI→I′ (~p ) ≺ TI→I′ (~q )

Lexicographical order on integer tuples can be defined as
follows [15]:

[p1, ..., pn] ≺ [q1, ..., qn] ⇔

∃m : (∀i : 1 ≤ i < m ⇒ pi = qi) ∧ (pm < qm)

The dependences of the transformed iteration space are

DI′
→I′ = {TI→I′ (~p ) → TI→I′ (~q ) | ~p → ~q ∈ DI→I}

and the new data mapping MI′
→a for each array a is

MI′
→a = {TI→I′ (~p ) → MI→a(~p ) | ~p ∈ I}

Given the new dependences and data mappings, we can plan
further run-time transformations.

Within this framework run-time reordering transforma-
tions operate on subspaces within the unified iteration space.
For each mapping of statements to unified iteration space
a subspace can be specified by selecting a subset of dimen-
sions in the mapping. A subspace is a candidate for run-time
reordering transformations whenever the statements within
the subspace involve non-affine memory references.

Data run-time reordering transformations are always legal
since they do not affect dependences. It is not possible to
perform iteration reordering if dependences between itera-
tions in the subspace completely order the execution3. Some
run-time iteration-reordering transformations (eg. lexico-
graphical grouping, lexicographical ordering, bucket tiling)

3Reduction dependences are the exception, because they al-
low some reordering



can only be applied when there are no dependences be-
tween iterations in the selected subspace. When the sub-
space has dependences involving non-affine memory refer-
ences, run-time iteration-reordering transformations such as
run-time partial parallelization and sparse tiling satisfy the
constraints ordained by the dependences by inspecting the
dependences.

Run-time reordering transformations for partial parallelism
traverse all the data dependences within an iteration sub-
space and create a run-time parallel schedule with maximal
parallelism [25]. Parallelism is expressed within our frame-
work by mapping parallel iterations to the same point in the
unified iteration space.

Sparse tiling transformations partition a portion of the
subspace and then grow tiles that respect the data depen-
dences throughout the rest of the subspace. Since a loop
is typically the portion of the subspace initially partitioned,
sparse tiles are grown across dependences between loops or
between iterations of an outer loop. By mapping all inde-
pendent tiles to the same tile number, parallelism between
tiles can be expressed.

5. COMPOSING TRANSFORMATIONS
This section illustrate how to specify the effects of apply-

ing several run-time data and iteration-reordering transfor-
mations for the simplified moldyn example.

5.1 Run-time Data Reordering
Run-time data reordering inspectors traverse data map-

pings and generate a data reordering function. Figure 10
shows the CPACK inspector code specialized for the origi-
nal data mapping MI0→x0

(specified in section 3.2) in the
simplified moldyn example. This specialized CPACK inspec-
tor is called by the composed inspector in figure 11.

The effect of CPACK can be specified at compile-time
by changing all the data mappings which involve the array
being reordered. In the simplified moldyn example, it makes
sense to construct the same reordering for the x, fx, and vx

arrays. Let Rx0→x1
= {m → m1 | m1 = σcp(m)} specify

the run-time data reordering on the x array, where x0 is the
data space for the x array in its original order, and x1 is
the data space for the reordered array x1. The new data
mapping is specified as follows:

MI0→x1
= {[s, 1, i, 1] → [σcp(i)]}

∪ {[s, 2, j, q] → [σcp(left(j))]}

∪ {[s, 2, j, q] → [σcp(right(j))]}

∪ {[s, 3, k, 1] → [σcp(k)]}

A data reordering σgp based on Gpart, orders data within
the same partition consecutively. In the simple moldyn ex-
ample, the abstract specification of the iteration to data
mappings after applying Gpart is obtained by replacing σcp

with σgp.

5.2 Run-time Iteration Reordering
If an iteration-reordering transformation on the j loop

follows a data reordering transformation (as in our experi-
ments), then the inspector for the iteration-reordering trans-
formation will traverse the updated data mappings. In the
simplified moldyn example, lexGroup will iterate over the
data mappings that include the σcp function if lexGroup is

CPACK M I0 to x0(left,right)

// initialize alreadyOrdered bit vector

// to all false

count = 0

do j=1 to num inter

mem loc1 = left[j]

mem loc2 = right[j]

if not alreadyOrdered(mem loc1)

sigma cp inv[count] = mem loc1

alreadyOrdered(mem loc1) = true

count = count + 1

endif

if not alreadyOrdered(mem loc2)

sigma cp inv[count] = mem loc2

alreadyOrdered(mem loc2) = true

count = count + 1

endif

enddo

do i=1 to num nodes

if not alreadyOrdered(i)

sigma cp inv[count] = i

count = count + 1

endif

enddo

return sigma cp inv

Figure 10: First CPACK inspector for moldyn called
from composed inspector in Figure 11.

performed after CPACK. The iteration reordering of the i,
j, and k loops is specified as follows:

TI0→I1 = {[s, 1, i, 1] → [s, 1, i1, 1] | i1 = σcp(i)}

∪ {[s, 2, j, q] → [s, 2, j1, q] | j1 = δlg(j)}

∪ {[s, 3, k, q] → [s, 3, k1, 1] | k1 = σcp(k)}

Since each iteration of the i and k loops directly maps
to the x, fx, and vx arrays, the data reordering function
generated for them, σcp, can be used for reordering the i

and k loops as well. The transformation TI0→I1 is legal
because the only loop-carried dependences within the i, j,
or k loops are reduction dependences between iterations of
the j loop.

Due to the iteration reordering, the data mappings and
dependences become:

MI1→x1
= {[s, 1, σcp(i), 1] → [σcp(i)]}

∪ {[s, 2, δlg(j), q] → [σcp(left(j))]}

∪ {[s, 2, δlg(j), q] → [σcp(right(j))]}

∪ {[s, 3, σcp(k), q] → [σcp(k)]}

(d′

12 ∪ d
′

13 ∪ d
′

24 ∪ d
′

34) ⊂ DI1→I1

d
′

12 ∪ d
′

13 = {[s, 1, σcp(i), 1] → [s′, 2, δlg(j), q] |

(s ≤ s
′) ∧ (1 ≤ q ≤ 2) ∧ (i = left(j) ∨ i = right(j))}

d
′

24 ∪ d
′

34 = {[s, 2, δlg(j), q] → [s′, 3, σcp(k), 1] |

(s ≤ s
′) ∧ (1 ≤ q ≤ 2) ∧ (k = left(j) ∨ k = right(j))}



// First application of CPACK

sigma cp inv = CPACK M I0 to x0(left,right)

sigma cp = calcInverse(sigma cp inv)

// First application of lexGroup

delta lg = lexGroup M I0 to x1(left,right,

sigma cp)

delta lg inv = calcInverse(delta lg)

// Second application of CPACK

sigma cp2 inv= CPACK M I1 to x1(left,right,

sigma cp,delta lg inv)

sigma cp2 = calcInverse(sigma cp2 inv)

// Second application of lexGroup

delta lg2 = lexGroup M I1 to x2(left,right,

sigma cp,delta lg inv,sigma cp2)

delta lg2 inv= calcInverse(delta lg2)

// Reorder data arrays to reflect

// final data mapping

x2 = remapArray R x0 to x2(x,

sigma cp, sigma cp2)

// Adjust values in index arrays to

// reflect final data mapping

left = adjustIndexArray R x0 to x2(left,

sigma cp,sigma cp2)

right = adjustIndexArray R x0 to x2(right,

sigma cp,sigma cp2)

// Reorder index arrays to implement

// final iteration reordering

left2 = remapArray T I0 to I2(left,

delta lg,delta lg2)

right2 = remapArray T I0 to I2(right,

delta lg,delta lg2)

Figure 11: Composed inspector for CPACK, lex-
Group, CPACK, and lexGroup composition.

5.3 Subsequent Transformations
When composing run-time reordering transformations, spe-

cialized instances of the relevant inspectors can be created
that account for changes to the data mappings and de-
pendences incurred by any previously planned inspectors.
The explicit abstract description of how run-time reorder-
ing transformations affect each other allows new run-time
reordering transformation compositions. For example, it is
possible to generate another CPACK data reordering and
lexGroup iteration reordering after generating the first
CPACK and lexGroup reorderings.

Figure 12 shows how the second CPACK inspector is spe-
cialized to traverse the data mappings resulting from the
first data and iteration-reordering functions, MI1→x1

. The
array delta lg inv stores the inverse of the iteration re-
ordering function δlg . The second CPACK inspector speci-
fies a data reordering Rx1→x2

= {m1 → m2|m2 = σcp2(m1)}.
A second iteration-reordering transformation for loop j

traverses the data mapping MI1→x2
and generates the re-

CPACK M I1 to x1(left,right,sigma cp, sigma lg inv)

// initialize alreadyOrdered bit vector

// to all false

count = 0

do j1=1 to num inter

mem loc1 = sigma cp[left[delta lg inv[j1]]]

mem loc2 = sigma cp[right[delta lg inv[j1]]]

// same as CPACK M I0 to x0 except creating

// sigma cp2 inv instead of sigma cp inv

...

return sigma cp2 inv

Figure 12: Second CPACK inspector for moldyn

called from composed inspector in Figure 11.

do s = 1 to num steps

do i2 = 1 to num nodes

x2[i2] = x2[i2] + vx2[i2] + fx2[i2]

enddo

do j2 = 1 to num inter

fx2[left2[j2]] += g(x2[left2[j2]],

x2[right2[j2]])

fx2[right2[j2]] += g(x2[left2[j2]],

x2[right2[j2]])

enddo

do k2 = 1 to num nodes

vx2[k2] += fx2[k2]

enddo

enddo

Figure 13: Executor for simple moldyn example when
inspector applies CPACK, lexGroup, CPACK, lex-
Group composition.

ordering function δlg2 to implement the transformation TI1→I2 .

MI1→x2
= {[s, 1, σcp(i), 1] → [σcp2(σcp(i))]}

∪ {[s, 2, δlg(j), q] → [σcp2(σcp(left(j)))]}

∪ {[s, 2, δlg(j), q] → [σcp2(σcp(right(j)))]}

∪ {[s, 3, σcp(k), q] → [σcp2(σcp(k))]}

TI1→I2 = {[s, 1, i1, 1] → [s, 1, i2, 1] | i2 = σcp(i1)}

∪ {[s, 2, j1, q] → [s, 2, j2, q] | j2 = δlg2(j1)}

∪ {[s, 3, k1, q] → [s, 3, k2, 1] | k2 = σcp2(k1)}

With a compile-time description of the effects of a run-
time data or iteration reordering, it is possible to plan com-
positions of run-time transformations and generate code for
the composed data remappings at the end of all inspection.
This is done by manipulating reordering function arrays
(sigma cp, delta lg, etc.) at run-time. The composed in-
spector in figure 11 remaps and updates the data and index
arrays accordingly after all data and iteration reorderings
have been computed.



do s = 1 to num steps

do t=1 to num tiles

do i4 in sched(t,1)

x3[i4] = x3[i4] + vx3[i4] + fx3[i4]

enddo

do j4 in sched(t,2)

fx3[left3[j4]] += g(x3[left3[j4]],

x3[right3[j4]])

fx3[right3[j4]] += g(x3[left3[j4]],

x3[right3[j4]])

enddo

do k4 in sched(t,2)

vx3[k4] += fx3[k4]

enddo

enddo

enddo

Figure 14: Sparse tiled executor when the composed
inspector performs CPACK, lexGroup, CPACK,
lexGroup, full sparse tiling, and tilePack.

5.4 Sparse Tiling
As iteration-reordering transformations, sparse tiling trans-

formations can also be composed with other run-time re-
ordering transformations. The main difference between sparse
tiling transformations and other run-time reordering trans-
formations for locality is that sparse tiling is applicable within
subspaces of the unified iteration space that have data de-
pendences. This is possible because sparse tiling inspectors
traverse the data dependences.

In the simplified moldyn example, applying sparse tiling
after the CPACK, lexGroup, CPACK, lexGroup series of
run-time transformations described in Section 5.3 can be
specified with the following transformation mapping.

TI2→I3 = {[s, 1, i2, 1] → [s, θ(1, i3), 1, i3, 1] | i3 = i2}

∪ {[s, 2, j2, q] → [s, θ(2, j3), 2, j3, q] | j3 = j2}

∪ {[s, 3, k2, 1] → [s, θ(3, k3), 3, k3, 1] |k3 = k2}

The tiling function θ assigns a subspace of the unified itera-
tion space to tile numbers. The subspace being sparse tiled
in this example is {[1, i2] ∪ [2, j2] ∪ [3, k2]}, with the seed
partitioning occurring on the [2, j2] portion of the subspace.
Figure 5 illustrates an instance of sparse tiled moldyn that
uses full sparse tiling for tile growth.

In Figure 5, the computation exhibits better spatial lo-
cality if the data arrays are remapped after sparse tiling.
Specifically if the data item (and corresponding iteration)
numbered as 6 is put before 3, and 2 before 5, there is bet-
ter locality. We refer to reordering the data and iterations
in loops i and k based on the tiling function as tile pack-
ing (tilePack). TilePack uses an inspector that traverses the
tiling function to generate a data reordering and iteration-
reordering transformation.

// First application of CPACK

sigma cp inv = CPACK M I0 to x0(left,right)

sigma cp = calcInverse(sigma cp inv)

// Reorder data arrays to reflect data mapping

x1 = remapArray R x0 to x1(x,sigma cp)

// Adjust values in index arrays

left = adjustIndexArray R x0 to x1(left,

sigma cp)

right = adjustIndexArray R x0 to x1(right,

sigma cp)

// First application of lexGroup

delta lg = lexGroup M I0 to x1 B(left,right)

// Reorder index arrays to implement lexGroup

left1 = remapArray T I0 to I1(left,

delta lg)

right1 = remapArray T I0 to I1(right,

delta lg)

// Second application of CPACK

sigma cp2 inv= CPACK M I1 to x1 B(left1,right1)

sigma cp2 = calcInverse(sigma cp2 inv)

// Reorder data arrays to reflect data mapping

x2 = remapArray R x1 to x2(x1,sigma cp2)

// Adjust values in index arrays

left1 = adjustIndexArray R x1 to x2(left1,

sigma cp2)

right1 = adjustIndexArray R x1 to x2(right1,

sigma cp2)

// Second application of lexGroup

delta lg2 = lexGroup M I1 to x2 B(left1,right1)

// Reorder index arrays to implement

// final iteration reordering

left2 = remapArray T I1 to I2(left1,

delta lg2)

right2 = remapArray T I1 to I2(right1,

delta lg2)

Figure 15: Composed inspector for CPACK, lex-
Group, CPACK, and lexGroup where data remap-
ping and index array updates are done immediately
after the relevant reordering function is generated.

Rx2→x3
= {[m2] → [m3] | m3 = σtp(m2)}

TI3→I4 = {[s, t, 1, i3, 1] → [s, t, 1, i4, 1] | i4 = σtp(i3)}

∪ {[s, t, 2, j3, q] → [s, t, 2, j4, q] | j4 = j3}

∪ {[s, t, 3, k3, 1] → [s, t, 3, k4, 1] | k4 = σtp(k3)}

Figure 14 shows the executor for the simple moldyn exam-
ple when the iteration-reordering composition TI0→I4 and
the data reordering compositions Rx0→x3

are generated by
composing the transformation mappings discussed in this
section and previous sections. Since the transformed code
must traverse the final iteration space in lexicographical or-
der, a schedule (indexed by the tile and all but the last
dimension in the subspace being sparse tiled) is created to



indicate the subset of iterations within each tile.

sched(t, 1) = {[i4] | i4 = σtp(i3) ∧ θ(1, i3) = t}

sched(t, 2) = {[j4] | j4 = j3 ∧ θ(2, j3) = t}

sched(t, 3) = {[k4] | k4 = σtp(k3) ∧ θ(3, k3) = t}

6. REDUCING THE OVERHEAD
The overhead of executing any inspector must be amor-

tized to make run-time reordering transformations benefi-
cial. In our experiments, we take advantage of the frame-
work in two ways to generate efficient inspectors. First, in
the benchmarks there are cases where two sets of data de-
pendences satisfy the same constraints. Therefore, the full
sparse tiling inspector need only traverse one set of data
dependences while generating a legal tile function. Second,
our experimental results indicate that remapping the data
arrays after all run-time reordering functions have been gen-
erated reduces the execution time of inspectors that perform
more than one data reordering.

Whenever two sets of data dependences satisfy the same
constraints, it is only necessary to traverse one set at run-
time. In the simplified moldyn example, the data depen-
dences between statement S1 and the statements in the j

loop, S2 and S3, are symmetric to the dependences between
the statements in the j loop and statement S4. Therefore,
our full sparse tiling inspector need only traverse one set of
these dependences to grow the tiles from a seed partitioning
of the j loop to the i and k loops. A similar situation occurs
in all the benchmarks we use for experiments.

The framework allows the compiler to choose when to
remap a data array. Figure 11 illustrates a composed in-
spector that performs data remapping and index array ad-
justments after all reordering functions are generated, and
Figure 15 shows an inspector performing the same composi-
tion of transformations, but remapping and adjusting after
each reordering function is generated. Notice that many of
the functions, like CPACK M I1 to x1 B, take fewer parame-
ters in Figure 15 than in Figure 11. Since the index ar-
rays left and right are remapped and adjusted after every
transformation in Figure 15, the index arrays which main-
tain the reordering functions are not needed. This results in
fewer indirect memory references in the composed inspector
and can have an affect on its performance.

Our experience suggests that remapping and adjusting the
index arrays after each transformation and remapping the
data arrays after all data reordering transformations leads to
the most efficient inspectors. Figure 16 shows the percentage
execution time reduction when the data arrays are remapped
after all transformations. The results are shown only for
the irreg and moldyn benchmarks because nbf does not
benefit from the tilePack data reordering transformation.
Therefore, most of the compositions involving nbf do not
use two or more data reordering transformations.

Optimal generation of composed inspectors is an open
question. Our framework allows the expression of diverse
possibilities.

7. FUTURE WORK
An obvious extension of our work is the automatic gen-

eration of specialized run-time inspectors. Specializing an
inspector for a reordering transformation in the context of
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its position in a composed inspector should result in less
overhead than an inspector implemented in a run-time li-
brary, since the latter must be generally applicable. The
need for specialized inspectors has been described in work
for data locality [20] and parallelism [11].

Automatically generating code for the inspector and ex-
ecutor can leverage the work in [7], which describes compiler
support for dynamic data packing, and the work in [16],
which generates optimized code for compile-time transfor-
mations. Specifically, the techniques described in [16] can
be used to generate the transformed executor code and the
inspector code that traverses the data mappings and depen-
dences. Automatically generating specialized and optimized
versions of the various data and iteration-reordering algo-
rithms such as CPACK, lexGroup, and full sparse tiling will
be more challenging.

To completely automate the usage of composed run-time
reordering transformations, more performance modeling work
is needed to select between various compositions and the



parameters for compositions. Figure 17 shows how the per-
formance of the executor differs as the Gpart and full sparse
tiling parameters are selected to target different cache sizes.
The performance varies depending on the benchmark and
dataset. The machine is also a factor. Since characteristics
of the dataset are not available until runtime, the selection
and order of run-time reordering transformations depend on
information available at runtime as well as compile time. In
the domain of data and iteration reordering, [22, 33] pro-
pose methods for guidance when some information such as
the data access pattern is not available until runtime.

8. RELATED WORK
Run-time reordering transformations differ from dynamic

compilation techniques such as those described in [10], be-
cause reordering transformations do not change the code at
runtime. Instead the code has already been transformed
and inspectors create data and iteration-reordering func-
tions, which are stored in index arrays.

Researchers have developed run-time data dependence
analysis to handle non-affine memory references [23, 26].
In [23] constraints for disproving dependences are evaluated
at run-time. Rus et al. [26] take this further adding the
ability to traverse all data dependences at run-time if neces-
sary. They perform a hybrid (static and dynamic) data de-
pendence analysis inter-procedurally. As we have described
in this paper, traversing data dependences at run-time is
necessary for some run-time reordering transformations.

Many run-time data reordering transformations [4, 2, 21,
7, 12] fit within our framework. Space filling curves and reg-
ister tiling for sparse matrix vector multiply are two types of
data reordering transformations that are more specialized.
Data reorderings generated from space-filling curves [28, 20]
traverse data mappings and mappings of data to spatial co-
ordinates. The programmer must specify how data maps
to spatial coordinates, therefore, such data reorderings can
not be fully automated. Im and Yelick [13] have developed
the SPARSITY code generator that improves the locality

for the ~x and ~b vectors in the sparse matrix-vector multi-

plication A~x = ~b. The dynamic register blocking techniques
are useful for many application domains that use sparse ma-
trices, but the work focuses on a single algorithm.

There has been a definite progression toward complete
automation of run-time reordering transformations. Ini-
tially such transformations were incorporated into appli-
cations manually for parallelism [5]. Next, libraries with
run-time transformation primitives were developed so that
a programmer or compiler could insert calls to such prim-
itives [6]. Currently, there are many run-time reordering
transformations for which a compiler can automatically an-
alyze and generate the inspectors [25, 7, 21, 12]. However,
each transformation or composition of transformations are
treated separately. Our framework provides a uniform rep-
resentation for these transformations and describes how to
compose any number of them at compile-time.

9. CONCLUSIONS
This paper motivates compositions of run-time data and

iteration reordering transformations with experimental re-
sults showing significant performance improvements for the
moldyn, nbf, and irreg benchmarks. We show how to use
an existing compile-time framework to formally express the

changes in dependences and data mappings which occur
when a composition of data and iteration reorderings are
performed. Representing the abstract effect of run-time data
and iteration-reordering transformations at compile-time is
an important step toward the automatic generation of spe-
cialized inspectors. By showing that sparse tiling can be
represented in our framework, we demonstrate its general
applicability to other irregular codes; until now, it has been
used only on Gauss-Seidel. We also use two different opti-
mizations to improve the performance of our composed in-
spectors, thus reducing the overhead of composed run-time
reordering transformations.
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